
Programming Language 
Impact on the Development 

of Distributed Systems

Steve Vinoski
Architect, Basho Technologies

Cambridge, MA USA
vinoski@ieee.org

@stevevinoski
http://steve.vinoski.net/

Wednesday, December 14, 11

mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org
mailto:vinoski@ieee.org


Co-Authors

•Debasish Ghosh, Anshin Software, 
Kolkata, India

•Kresten Krab Thorup, Trifork, 
Aarhus, Denmark

• Justin Sheehy, Basho Technologies, 
Cambridge, MA USA

Wednesday, December 14, 11



TL;DR
• RPC was invented in RFC 707 in 1975, Nelson 

RPC implementation paper in 1981

• 80s dist. sys. research focused on distribution 
of objects, often ignoring distributed failure 
modes

• Systems like CORBA, COM, J2EE, and WS-* 
focused on

• language first

• major languages (Java, C++)

• distributed systems second

Wednesday, December 14, 11



Alternative Languages

• Today the web, the cloud, and “big data” 
systems often use languages like Ruby, 
Python, PHP, JavaScript, etc.

• Integration often occurs at the web level, 
not in traditional middleware

• HTTP finally provides true interface/
implementation split

• Allows more freedom of language choice 
for e.g. time-to-market, maintenance ease

Wednesday, December 14, 11



Erlang is our solution to three problems regarding the 
development of highly concurrent, distributed “soft real-
time systems”:

• To be able to develop the software quickly and 
efficiently

• To have systems that are tolerant of software errors 
and hardware failures

• To be able to update the software on the fly, that is, 
without stopping execution

— Mike Williams, co-inventor of Erlang
(quote from “Erlang Programming” by F. Cesarini and S. Thompson)

Wednesday, December 14, 11



•Mid-80′s, Ericsson Computer 
Science Laboratories (CSL)

•Joe Armstrong began investigating 
languages for programming next-
generation telco equipment

•Erlang initially implemented in 
Prolog with influence and ideas from 
ML, Ada, Smalltalk, other languages

Erlang Origins

Wednesday, December 14, 11



Erlang History
• Robert Virding and Mike Williams joined Joe to 

continue Erlang development

• 1991: Claes “Klacke” Wikström added 
distribution to Erlang

• 1993: first commercial version of Erlang

• 1996: Open Telecom Platform (OTP)

• 1998: Erlang goes open source, available from 
www.erlang.org

• Growing ever since, especially past 5 years

Wednesday, December 14, 11

http://www.erlang.org
http://www.erlang.org


They Come for the 
Concurrency...

•What often attracts developers to 
Erlang is its concurrency support

•Erlang processes are very 
lightweight and inexpensive

•Concurrent apps easier than in Java, 
C++, etc. — no dealing with error-
prone concurrency primitives

Wednesday, December 14, 11



“What if the OOP parts of other languages 
(Java, C++, Ruby, etc.) had the same 
behavior as their concurrency support? What 
if you were limited to only creating 500 
objects total for an application because any 
more would make the app unstable and 
almost certainly crash it in hard-to-debug 
ways? What if these objects behaved 
differently on different platforms?”

— Joe Armstrong, father of Erlang

Wednesday, December 14, 11



...But They Stay for the 
Reliability

•Erlang’s concurrency directly supports 
its strong reliability

•Shared-nothing approach yields 
reliability, scalability

•Cheap recovery: if something goes 
wrong, let it crash, start a new one

•True multiprocessing: start processes 
on different cores/hosts

Wednesday, December 14, 11



Reliability and 
Processes

•Isolation: processes communicate only 
via message passing (no shared state)

•Distribution: need 2+ computers for a 
reliable system, so process model 
must work across nodes

•Monitoring and supervision: allow one 
process to detect when another one 
fails and take appropriate action

Wednesday, December 14, 11



Process Architecture

Core 1 Core N. . . . . .

OS + kernel threads

Wednesday, December 14, 11



Process Architecture

Core 1 Core N. . . . . .

SMP
Schedulers Erlang VM

OS + kernel threads

Wednesday, December 14, 11



Process Architecture

Core 1 Core N. . . . . .

SMP
Schedulers Erlang VM

Run Queues

OS + kernel threads

Wednesday, December 14, 11



Process Architecture

Core 1 Core N. . . . . .

SMP
Schedulers Erlang VM

Run QueuesProcess

Process

Process

Process

Process

Process

OS + kernel threads

Wednesday, December 14, 11



Process Linking
• One process can monitor another by:

• Linking: bidirectional, each process is 
tied to the other (erlang:link/1, 
erlang:spawn_link/1,2,3,4)

• Monitoring: one process monitors 
another (erlang:monitor/2)

• Allows processes to take action when 
another one dies

• And works across multiple nodes

Wednesday, December 14, 11



Matching/Binding

•Binding variables via matching can 
apply to multiple variables at once

{{Year, Month, Day}, {Hour, Min, Sec}} =
      calendar:local_time().

•Result: {{2011,12,13},{10,32,47}}

•Year=2011, Month=12, Day=13
Hour=10, Min=32, Sec=47

Wednesday, December 14, 11



Binary Matching

•Matching a TCP header (from Cesarini 
& Thompson “Erlang Programming”)
<<SourcePort:16, DestinationPort:16,
   SequenceNumber:32, AckNumber:32,
   DataOffset:4, _Reserved:4, Flags:8,
   WindowSize:16, Checksum:16,
   UrgentPointer :16, Payload/binary>> = TcpBuf.

Wednesday, December 14, 11



And So Much More

• Relatively simple language with few constructs

• Capabilities for foreign system integration

• Functional programming (immutable variables, 
higher-order functions, tail recursion, etc.)

• Standardized OTP frameworks for servers, 
state machines, event handlers, supervisors, 
applications

• Choose from many open source libraries and 
components

Wednesday, December 14, 11



What About the JVM?

•Akka: Erlang-inspired middleware in 
Scala on the JVM

•Erjang: implementation of Erlang on 
the JVM

Wednesday, December 14, 11



Challenge
• Today’s web, cloud, “big data” systems still 

need modularity, failover, redundancy, 
consistency, availability, etc.

• Many are implemented in alternative 
languages

• Research challenge: how to take further 
advantage of alternative languages like 
Erlang, Akka, Lua, JavaScript, etc. to build 
better large-scale systems, without a 
“language first” focus

Wednesday, December 14, 11


