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Course overview 

•  3 sessions (Mon/Tue/Thur): 6 × 50 minute lectures 

−  1: Markov decision processes (MDPs) 
−  2: Probabilistic LTL model checking 
−  3: Compositional probabilistic verification 
−  4: Abstraction, refinement and probabilistic software 
−  5: Probabilistic timed automata (PTAs) 
−  6: Software with time and probabilities 

•  For additional background material 
−  and an accompanying list of references 
−  see: http://www.prismmodelchecker.org/lectures/ 
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Overview (Part 4) 

•  Abstraction & refinement (CEGAR) 

•  Abstraction of MDPs using stochastic games 

•  Quantitative abstraction refinement 

•  Probabilistic software verification 



Abstraction 

•  Very successful in (non-probabilistic) formal methods 
−  essential for verification of large/infinite-state systems 
−  hide details irrelevant to the property of interest 
−  yields smaller/finite model which is easier/feasible to verify 
−  loss of precision: verification can return “don’t know” 

•  Construct abstract model of a concrete system 
−  e.g. based on a partition of the concrete state space 
−  an abstract state represents a set of concrete states 



Abstraction refinement (CEGAR) 

•  Counterexample-guided abstraction refinement 
−  (non-probabilistic) model checking of reachability properties 
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Recap: MDPs 

•  Markov decision processes (MDPs) 
−  mix probability and nondeterminism 

•  An adversary σ for an MDP M 
−  resolves nondeterministic choices 

based on history so far 
−  induces probability measure PrM,s

σ 
over (infinite) paths PathM,s

σ 

•  Properties: 
−  key property: probabilistic reachability 
−  quantify over all possible adversaries 
−  PrM

min (◊F) =  infσ { PrM,s
σ (◊F) } 

−  PrM
max (◊F) =  supσ { PrM,s

σ (◊F) } 
−  here, we will abbreviate these to ps

σ(F), ps
min(F) and ps

max(F)  
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Abstraction of MDPs 

•  Abstraction increases degree of nondeterminism 
−  i.e. minimum probabilities are lower and maximums higher 

•  But what form does the abstraction of an MDP take? 
•  2 possibilities: 

 (i) an MDP [DJJL01] 
−  probabilistic simulation relates concrete/abstract models 

 (ii) a stochastic two-player game [KNP06] 
−  separates nondeterminism from abstraction and from MDP 
−  yields separate lower/upper bounds for min/max  

0 1 ps
min ps

max 

0 1 ps
min ps

max 



Stochastic two-player games 

•  Subclass of simple stochastic games [Shapley,Condon] 
−  two nondeterministic players (1 and 2) and probabilistic choice 

•  Resolution of the nondeterminism in a game 
−  corresponds to a pair of strategies for players 1 and 2: (σ1,σ2) 
−  pa

σ1,σ2(F) probability of reaching F from a under (σ1,σ2) 
−  can compute, e.g. : supσ1 infσ2 pa

σ1,σ2(F) 
−  informally: “the maximum probability of reaching F that player 1 

can guarantee no matter what player 2 does” 

•  Abstraction of an MDP as a stochastic two-player game: 
−  player 1 controls the nondeterminism of the abstraction 
−  player 2 controls the nondeterminism of the MDP 



Game abstraction (by example) 

•  Player 1 vertices (    ) are abstract states 
•  (Sets of) distributions are lifted to the abstract state space 
•  Player 2 vertices (   ) are states with same (sets of) choices 
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Properties of the abstraction 

•  Analysis of game yields lower/upper bounds: 
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a 
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Properties of the abstraction 

•  Analysis of game yields lower/upper bounds: 
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a 

         infσ1,σ2 pa
σ1,σ2(F)  ≤   ps

min(F)   ≤    supσ1 infσ2 pa
σ1,σ2(F)  

   infσ1 supσ2 pa
σ1,σ2(F)  ≤   ps

max(F)   ≤    supσ1,σ2 pa
σ1,σ2(F) 

 min/max reachability probabilities, treating game as MDP 
(i.e. assuming that players 1 and 2 cooperate) 
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Example - Abstraction 
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Experimental results 

•  Israeli & Jalfon’s Self Stabilisation 
−  protocol for obtaining a stable state in a token ring 
−  minimum probability of reaching a stable state by time T 

concrete states: 1,048,575 

abstract states: 627 



Experimental results 

•  IPv4 Zeroconf 
−  protocol for obtaining an IP address for a new host 
−  maximum probability the new host not configured by T 

concrete states: 838,905 

abstract states: 881          



Overview (Part 4) 
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Abstraction refinement 

•  Consider (max) difference between lower/upper bounds 
−  gives a quantitative measure of the abstraction’s precision 

•  If the difference (“error”) is too great, refine the abstraction 
−  a finer partition yields a more precise abstraction 
−  lower/upper bounds can tell us where to refine (which states) 
−  (memoryless) strategies can tell us how to refine 
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Example - Refinement 
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Abstraction-refinement loop 

•  Quantitative abstraction-refinement loop for MDPs 
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Abstraction-refinement loop 

•  Implementations of quantitative abstraction refinement… 

•  Verification of probabilistic timed automata [KNP09c] 
−  zone-based abstraction/refinement using DBMs 
−  implemented in (development release of) PRISM 
−  outperforms existing PTA verification techniques 

•  Verification of probabilistic software [KKNP09] 
−  predicate abstraction/refinement using SAT solvers 
−  implemented in tool qprover: components of PRISM, SATABS 
−  analysed real network utilities (ping, tftp) - approx 1KLOC 

•  Verification of concurrent PRISM models [WZ10] 
−  implemented in tool PASS; infinite-state PRISM models 



Overview (Part 4) 

•  Abstraction & refinement (CEGAR) 

•  Abstraction of MDPs using stochastic games 

•  Quantitative abstraction refinement 

•  Probabilistic software verification 



Probabilistic software  

•  Consider sequential ANSI C programs  
−  support functions, pointers, arrays, but not dynamic memory 

allocation, unbounded recursion, floating point op.s 

•  Add function bool coin(double p) for probabilistic choice 
−  for modelling e.g. failures, randomisation 

•  Add function int ndet(int n) for nondeterministic choice 
−  for modelling e.g. user input, unspecified function calls 

•  Focus on software where failure is unavoidable 
−  e.g. network protocols/utilities, esp. wireless 

•  Quantitative properties based on probabilistic reachability 
−  e.g. maximum probabilistic of unsuccessful data transmission 
−  e.g. minimum expected number of packets sent 



Example – sample target program 

Property: 
•  “what is the minimum/maximum 
  probability of the program 
  terminating with fail being true?” 

bool fail = false; 
int c = 0; 
int main() 
{ 

 // nondeterministic 
 c = num_to_send(); 
 while (! fail && c > 0) 
 { 
  // probabilistic 
  fail = send_msg(); 
  c--; 
 } 

} 

Program: 
•  Loop that tries to send c messages 
•  c is obtained from num_to_send()  
  (returns 0/1/2 nondeterministically) 
•  send_msg() fails with probability 0.1 
•  Any failure causes loop to terminate 



Example – simplified 

bool fail = false; 
int c = 0; 
int main() 
{ 

 // nondeterministic 
 c = ndet(3); 
 while (! fail && c > 0) 
 { 
  // probabilistic 
  fail = coin(0.1); 
  c--; 
 } 

} 

Property: 
•  “what is the minimum/maximum 
  probability of the program 
  terminating with fail being true?” 



Abstraction-refinement loop 
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Abstraction-refinement loop 

•  Model extraction: extension of goto-cc 
−  function inlining, constant/invariant 

propagation, side-effect free expressions,  
points-to analysis, etc.                                        

•  Probabilistic program 
−  probabilistic control flow graph 
−  Markov decision process (MDP) semantics 
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Back to example 

Probabilistic program: 

bool fail = false; 
int c = 0; 
int main() 
{ 

 // nondeterministic 
 c = ndet(3); 
 while (! fail && c > 0) 
 { 
  // probabilistic 
  fail = coin(0.1); 
  c--; 
 } 

} Conditional 
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Probabilistic program as MDP 

Probabilistic program: MDP semantics: 

Property: 
ps

min (PC=5∧fail) = 0 
ps

max (PC=5∧fail) = 0.19  

s 



Abstraction-refinement loop 

•  Abstraction induced by a set of predicates 
−  SAT-based language-level abstraction 
−  ALLSAT for each edge of control-flow graph 
−  implemented in extension of SATABS 

•  Boolean probabilistic program 
−  (predicate) abstraction of probabilistic program 
−  stochastic two player game semantics 
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Back to example 

Probabilistic program: Boolean probabilistic program: 

(2 predicates: fail, c==0) 



Back to example 

Concrete program (MDP): Abstraction (game): 

ps
max (PC=5∧fail) = 0.19  

pa
lb,max (PC=5∧fail) = 0.1 
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s a 



Abstraction-refinement loop 

•  PRISM (extension of) 
−  adapted for verification of stochastic games 
−  uses symbolic data structures (MTBDDs) 

•  Bounds and strategy 
−  returned for a given probabilistic or expected reachability 

property                                                          
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Abstraction-refinement loop 

•  Predicates obtained using 
−  weakest preconditions (WP) 
−  through strategy based-refinement 
−  includes predicate localisation,                                    

reachability analysis, symbolic simulation,... 
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Experimental results 

•  Successfully applied to several Linux network utilities:  
−  PING (tool for establishing network connectivity) 
−  TFTP (file-transfer protocol client) 

•  Code characteristics 
−  1 KLOC of non-trivial ANSI-C code 
−  Loss of packets modelled by probabilistic choice 
−  Linux kernel calls modelled by nondeterministic choice 

•  Example properties 
−  “maximum probability of establishing a write request” 
−  “maximum expected amount of data that is sent before 

timeout” 
−  “maximum expected number of echo requests required to 

establish connectivity” 



Summary (Part 4) 

•  Abstraction: essential for large/infinite-state systems 
−  this lecture: abstractions of MDPs as stochastic games 
−  separation of nondeterminism from MDP/abstraction 
−  yields lower/upper bounds on min/max probabilities 

•  Quantitative abstraction refinement 
−  fully automatic generation of abstractions 
−  iterative refinement based on quantitative measure of ‘error’ 
−  works well in practice… 

•  Quantitative software verification 
−  ANSI-C + probabilistic behaviour 
−  tool chain using state-of-the-art techniques and tools 

•  Next: probabilistic timed automata 


