
Summer School on Model Checking, Beijing, October 2010

2

Course overview

•  3 sessions (Mon/Tue/Thur): 6 × 50 minute lectures

−  1: Markov decision processes (MDPs)
−  2: Probabilistic LTL model checking
−  3: Compositional probabilistic verification
−  4: Abstraction, refinement and probabilistic software
−  5: Probabilistic timed automata (PTAs)
−  6: Software with time and probabilities

•  For additional background material
−  and an accompanying list of references
−  see: http://www.prismmodelchecker.org/lectures/

Abstraction, refinement
and probabilistic software

Part 4

4

Overview (Part 4)

•  Abstraction & refinement (CEGAR)

•  Abstraction of MDPs using stochastic games

•  Quantitative abstraction refinement

•  Probabilistic software verification

Abstraction

•  Very successful in (non-probabilistic) formal methods
−  essential for verification of large/infinite-state systems
−  hide details irrelevant to the property of interest
−  yields smaller/finite model which is easier/feasible to verify
−  loss of precision: verification can return “don’t know”

•  Construct abstract model of a concrete system
−  e.g. based on a partition of the concrete state space
−  an abstract state represents a set of concrete states

Abstraction refinement (CEGAR)

•  Counterexample-guided abstraction refinement
−  (non-probabilistic) model checking of reachability properties

[true]

[yes] model
check

abstract

check
counter- 
example [no]

[false]

refine

initialise

True/false +
counterexample

Return
true

Abstraction
(existential)

Partition/
predicates

Spurious?

Return
false

Abstraction refinement (CEGAR)

•  Counterexample-guided abstraction refinement
−  (non-probabilistic) model checking of reachability properties

[true]

[yes] model
check

abstract

check
counter- 
example [no]

[false]

refine

initialise

True/false +
counterexample

Return
true

Abstraction
(existential)

Partition/
predicates

Spurious?

Return
false Quantitative

results?

What is a
counter- 
example?

How to
abstract

probabilistic
models?

Overview (Part 4)

•  Abstraction & refinement (CEGAR)

•  Abstraction of MDPs using stochastic games

•  Quantitative abstraction refinement

•  Probabilistic software verification

Recap: MDPs

•  Markov decision processes (MDPs)
−  mix probability and nondeterminism

•  An adversary σ for an MDP M
−  resolves nondeterministic choices 

based on history so far
−  induces probability measure PrM,s

σ 
over (infinite) paths PathM,s

σ

•  Properties:
−  key property: probabilistic reachability
−  quantify over all possible adversaries
−  PrM

min (◊F) = infσ { PrM,s
σ (◊F) }

−  PrM
max (◊F) = supσ { PrM,s

σ (◊F) }
−  here, we will abbreviate these to ps

σ(F), ps
min(F) and ps

max(F)

s1 s0

s2

s3

0.5

0.5 0.7

1
1

{heads}

{tails}

{init}

0.3

1 a

b

c
a

a

Abstraction of MDPs

•  Abstraction increases degree of nondeterminism
−  i.e. minimum probabilities are lower and maximums higher

•  But what form does the abstraction of an MDP take?
•  2 possibilities:

 (i) an MDP [DJJL01]
−  probabilistic simulation relates concrete/abstract models

 (ii) a stochastic two-player game [KNP06]
−  separates nondeterminism from abstraction and from MDP
−  yields separate lower/upper bounds for min/max  

0 1 ps
min ps

max

0 1 ps
min ps

max

Stochastic two-player games

•  Subclass of simple stochastic games [Shapley,Condon]
−  two nondeterministic players (1 and 2) and probabilistic choice

•  Resolution of the nondeterminism in a game
−  corresponds to a pair of strategies for players 1 and 2: (σ1,σ2)
−  pa

σ1,σ2(F) probability of reaching F from a under (σ1,σ2)
−  can compute, e.g. : supσ1 infσ2 pa

σ1,σ2(F)
−  informally: “the maximum probability of reaching F that player 1

can guarantee no matter what player 2 does”

•  Abstraction of an MDP as a stochastic two-player game:
−  player 1 controls the nondeterminism of the abstraction
−  player 2 controls the nondeterminism of the MDP

Game abstraction (by example)

•  Player 1 vertices () are abstract states
•  (Sets of) distributions are lifted to the abstract state space
•  Player 2 vertices () are states with same (sets of) choices

0.5 0.1 0.8
1

0.5
1 1 1

MDP (fragment)

0.1

Stochastic game (fragment)

1
0.2 0.8

abstract

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

0 1 ps
min ps

max

 min/max reachability probabilities for original MDP

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

optimal probabilities for player 1, player 2 in game

0 1 ps
min ps

max

Properties of the abstraction

•  Analysis of game yields lower/upper bounds:
−  for target F ∈ A, s ∈ S and a ∈ A with s ∈ a

 infσ1,σ2 pa
σ1,σ2(F) ≤ ps

min(F) ≤ supσ1 infσ2 pa
σ1,σ2(F)  

 infσ1 supσ2 pa
σ1,σ2(F) ≤ ps

max(F) ≤ supσ1,σ2 pa
σ1,σ2(F)

 min/max reachability probabilities, treating game as MDP
(i.e. assuming that players 1 and 2 cooperate)

0 1 ps
min ps

max

Example - Abstraction

0.5 0.1 0.8
1

0.5
1

0.1

1

F F

s

a

pa
lb,max (F) = 0.8

pa
ub,max (F) = 1

ps
max (F) = 1 ∈ [0.8,1]

abstract

1 1
0.2 0.8

F

where pa
lb,max(F) denotes infσ1supσ2 pa

σ1,σ2 (F)
and where pa

ub,max(F) denotes supσ1,σ2 pa
σ1,σ2 (F)

Experimental results

•  Israeli & Jalfon’s Self Stabilisation
−  protocol for obtaining a stable state in a token ring
−  minimum probability of reaching a stable state by time T

concrete states: 1,048,575

abstract states: 627

Experimental results

•  IPv4 Zeroconf
−  protocol for obtaining an IP address for a new host
−  maximum probability the new host not configured by T

concrete states: 838,905

abstract states: 881

Overview (Part 4)

•  Abstraction & refinement (CEGAR)

•  Abstraction of MDPs using stochastic games

•  Quantitative abstraction refinement

•  Probabilistic software verification

Abstraction refinement

•  Consider (max) difference between lower/upper bounds
−  gives a quantitative measure of the abstraction’s precision

•  If the difference (“error”) is too great, refine the abstraction
−  a finer partition yields a more precise abstraction
−  lower/upper bounds can tell us where to refine (which states)
−  (memoryless) strategies can tell us how to refine

0 1 ps
min(F) ps

max(F)

Example - Refinement

F F

a

0.8 1.0

ps
max (F) = 1 ∈ [0.8,1]

“error” = 0.2

ps
max (F) = 1 ∈ [1,1]

“error” = 0

a

refine

1 1
0.2 0.8

1 1
0.2 0.8

Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction

Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction •  Refinements yield
strictly finer partition

•  Guaranteed to  
converge for finite
models 

•  Guaranteed to
converge for infinite
models with finite
bisimulation

Abstraction-refinement loop

•  Implementations of quantitative abstraction refinement…

•  Verification of probabilistic timed automata [KNP09c]
−  zone-based abstraction/refinement using DBMs
−  implemented in (development release of) PRISM
−  outperforms existing PTA verification techniques

•  Verification of probabilistic software [KKNP09]
−  predicate abstraction/refinement using SAT solvers
−  implemented in tool qprover: components of PRISM, SATABS
−  analysed real network utilities (ping, tftp) - approx 1KLOC

•  Verification of concurrent PRISM models [WZ10]
−  implemented in tool PASS; infinite-state PRISM models

Overview (Part 4)

•  Abstraction & refinement (CEGAR)

•  Abstraction of MDPs using stochastic games

•  Quantitative abstraction refinement

•  Probabilistic software verification

Probabilistic software

•  Consider sequential ANSI C programs
−  support functions, pointers, arrays, but not dynamic memory

allocation, unbounded recursion, floating point op.s

•  Add function bool coin(double p) for probabilistic choice
−  for modelling e.g. failures, randomisation

•  Add function int ndet(int n) for nondeterministic choice
−  for modelling e.g. user input, unspecified function calls

•  Focus on software where failure is unavoidable
−  e.g. network protocols/utilities, esp. wireless

•  Quantitative properties based on probabilistic reachability
−  e.g. maximum probabilistic of unsuccessful data transmission
−  e.g. minimum expected number of packets sent

Example – sample target program

Property:
•  “what is the minimum/maximum 
 probability of the program 
 terminating with fail being true?”

bool fail = false;
int c = 0;
int main()
{

 // nondeterministic
 c = num_to_send();
 while (! fail && c > 0)
 {
 // probabilistic
 fail = send_msg();
 c--;
 }

}

Program:
•  Loop that tries to send c messages
•  c is obtained from num_to_send()  
 (returns 0/1/2 nondeterministically)
•  send_msg() fails with probability 0.1
•  Any failure causes loop to terminate

Example – simplified

bool fail = false;
int c = 0;
int main()
{

 // nondeterministic
 c = ndet(3);
 while (! fail && c > 0)
 {
 // probabilistic
 fail = coin(0.1);
 c--;
 }

}

Property:
•  “what is the minimum/maximum 
 probability of the program 
 terminating with fail being true?”

Abstraction-refinement loop

[error<ε]

Boolean
probabilistic

program

Bounds and
strategies

[error≥ε]

model
checking

refinement
Predicates

Return
bounds

Abstraction
(game)

Probabilistic
program

ANSI-C 
program

SAT
-based

abstraction

model
construction model

extraction

Software verification 
abstraction-refinement 
loop [KKNP09]

Abstraction-refinement loop

•  Model extraction: extension of goto-cc
−  function inlining, constant/invariant 

propagation, side-effect free expressions,  
points-to analysis, etc.

•  Probabilistic program
−  probabilistic control flow graph
−  Markov decision process (MDP) semantics

[error<ε]

Boolean
probabilistic

program

Bounds and
strategies

[error≥ε]

model
checking

refinement
Predicates

Return
bounds

Abstraction
(game)

Probabilistic
program

ANSI-C 
program

SAT
-based

abstraction

model
construction model

extraction

Back to example

Probabilistic program:

bool fail = false;
int c = 0;
int main()
{

 // nondeterministic
 c = ndet(3);
 while (! fail && c > 0)
 {
 // probabilistic
 fail = coin(0.1);
 c--;
 }

} Conditional

Nondet.
assignment

C code:

Assignment

Prob.
assignment

PC

Probabilistic program as MDP

Probabilistic program: MDP semantics:

Property:
ps

min (PC=5∧fail) = 0
ps

max (PC=5∧fail) = 0.19

s

Abstraction-refinement loop

•  Abstraction induced by a set of predicates
−  SAT-based language-level abstraction
−  ALLSAT for each edge of control-flow graph
−  implemented in extension of SATABS

•  Boolean probabilistic program
−  (predicate) abstraction of probabilistic program
−  stochastic two player game semantics

[error<ε]

Boolean
probabilistic

program

Bounds and
strategies

[error≥ε]

model
checking

refinement
Predicates

Return
bounds

Abstraction
(game)

Probabilistic
program

ANSI-C 
program

SAT
-based

abstraction

model
construction model

extraction

Back to example

Probabilistic program: Boolean probabilistic program:

(2 predicates: fail, c==0)

Back to example

Concrete program (MDP): Abstraction (game):

ps
max (PC=5∧fail) = 0.19

pa
lb,max (PC=5∧fail) = 0.1

pa
ub,max (PC=5∧fail) = 1

s a

Abstraction-refinement loop

•  PRISM (extension of)
−  adapted for verification of stochastic games
−  uses symbolic data structures (MTBDDs)

•  Bounds and strategy
−  returned for a given probabilistic or expected reachability

property

[error<ε]

Boolean
probabilistic

program

Bounds and
strategies

[error≥ε]

model
checking

refinement
Predicates

Return
bounds

Abstraction
(game)

Probabilistic
program

ANSI-C 
program

SAT
-based

abstraction

model
construction model

extraction

Abstraction-refinement loop

•  Predicates obtained using
−  weakest preconditions (WP)
−  through strategy based-refinement
−  includes predicate localisation,

reachability analysis, symbolic simulation,...

[error<ε]

Boolean
probabilistic

program

Bounds and
strategies

[error≥ε]

model
checking

refinement
Predicates

Return
bounds

Abstraction
(game)

Probabilistic
program

ANSI-C 
program

SAT
-based

abstraction

model
construction model

extraction

Experimental results

•  Successfully applied to several Linux network utilities:
−  PING (tool for establishing network connectivity)
−  TFTP (file-transfer protocol client)

•  Code characteristics
−  1 KLOC of non-trivial ANSI-C code
−  Loss of packets modelled by probabilistic choice
−  Linux kernel calls modelled by nondeterministic choice

•  Example properties
−  “maximum probability of establishing a write request”
−  “maximum expected amount of data that is sent before

timeout”
−  “maximum expected number of echo requests required to

establish connectivity”

Summary (Part 4)

•  Abstraction: essential for large/infinite-state systems
−  this lecture: abstractions of MDPs as stochastic games
−  separation of nondeterminism from MDP/abstraction
−  yields lower/upper bounds on min/max probabilities

•  Quantitative abstraction refinement
−  fully automatic generation of abstractions
−  iterative refinement based on quantitative measure of ‘error’
−  works well in practice…

•  Quantitative software verification
−  ANSI-C + probabilistic behaviour
−  tool chain using state-of-the-art techniques and tools

•  Next: probabilistic timed automata

